r,是一種激光泵浦探測法,通過測量泵浦光在樣品上生成的溫度場來測定樣品的面內熱導率;通過另一束探測光束探測在樣品處的微小反射率變反應出樣品處的溫度場,隨著泵浦與探測光在樣品上的焦點分離距離的增加,探針位置溫度場的相位滯后增大,振幅也迅速減小。圖1:SDTR的相位掃描曲線示意圖(1kHz、10kHz、50kHz三種頻率下的相位)在掃描中心附近,相位分布主要由泵浦光束和探針光束的有限尺寸決定,但隨著掃描距離增大,相位曲線變成線性的,并且其斜率與薄膜和襯底的熱導率和擴散率有關。圖2:SDTR的相位(a)和振幅掃描曲線(b)示意圖(圖中數據為Ti/Si樣品)圖2(a)和2(b)所示分別為整個掃描范圍內 ...
基于光學交流量熱法的空間域熱反射測量法SDTR的原理介紹1.光學交流量熱法空間域熱反射測量法SDTR是一種基于交流量熱法的熱導率測量方法,可用來測量直徑0.05mm以上的薄膜或塊體樣品的面內熱導率。測熱導率范圍為誤差約為5%。SDTR中采用經過調制的直徑小于激光(頻率f一般為100HZ-100KHZ)加熱樣品表面,并用探測光測量樣品距離激光加熱點x處的交流溫升導致的反射率同頻變化信號。在一維導熱假設下,該溫升信號可表達為其中成為熱擴散長度,Kx表示為樣品表面上x方向的熱導率,c是樣品的體積比熱容,f是激光的調制頻率,h是樣品厚度,Q是吸收的熱流密度。通過計算上述公式可以得到樣品表面上,距離調制 ...
同樣是基于激光泵浦-熱反射的探測技術,可以針對小尺寸薄膜樣品的面內熱物性的測量方法。相比于其他激光泵浦探測方法(如:TDTR,FDTR)它的優勢是可以測試薄膜樣品的面內熱物性,且成本低廉;同FDTR一樣是基于連續激光,不過目前的FDTR的調制頻率通常在5 kHz以上,因此只能測得10 W/mK 以上的面內熱導率,但SDTR通過改變泵浦和探測光斑的空間位置獲得相位和幅值信號,可以測量低于10 W/(m·K)的面內熱導率。1.SDTR測試圖1所示為 SDTR 的實驗系統光路圖。一束泵浦激光經正弦波調制后聚焦在樣品表面,對樣品進行周期性加熱;另一束波長不同的探測激光透過偏振分光棱鏡(透過率可通過調整 ...
,用圓形偏振光泵浦,測量圓形發光。1971年,克勞迪·赫爾曼和喬治·蘭佩爾用偏振光和磁場測量了GaSb中電子的自旋進動。這兩項關于GaSb的初步研究激發了半導體領域的光學取向(OISO)。穩態測量或許,研究半導體中OISOzui簡單、zui有效的方法是穩態偏振光致發光(PL)測量。通常,這是通過使用連續波(cw)來實現的,平面內圓偏振光源具有接近帶隙能量分離的光子能量。這將在半導體中產生凈非平衡自旋取向具有適當的自旋偏振光學躍遷的系統。當系統松弛時,會有一個優先的自旋方向,這將表現為PL中兩個圓螺旋度(I+(?))之間的強度差。通過計算圓極化度,可以直接讀出自旋極化,P = (I+?I?)/( ...
件接口控制激光泵浦功率和晶體內部溫度,以高精度調整相位匹配。我們同時還提供DLL文件以方便您使用LabVIEW,C++,Visual basic等語言進行控制或二次開發。本次實驗我們將驗證其偏振性。除了必要的光子源,我們還需要單光子探測器與高性能計數器。我們本次使用的是同樣由該公司推出的NIR單光子探測器模塊OEM,以及由Swabian公司推出的時間相關計數器 TimeTagger。NIR單光子探測器模塊OEM為900 nm至1700 nm近紅外波段的單光子探測帶來了重大突破。其基于冷卻InGaAs/InP 蓋革模式單光子雪崩光電二極管技術,可執行“門控”(GM)和“自由運行”(FR)探測模式 ...
CO的2-激光泵浦一個太赫茲腔。它們的太赫茲發射可以是連續波(cw),在2.52THz時,輸出功率超過150mW。輸出波長取決于太赫茲諧振器中的氣體。然而,連續波激光器只發射一條線,而且穩定的操作可能具有挑戰性。zui近,相對緊湊的太赫茲qcl開始在沒有低溫恒溫器的情況下工作,使用熱電冷卻器,溫度高達250K。在頻率梳操作中,帶寬一直高于一個八度的,但它仍然被限制在1THz-6THz。zui近,報道的峰值輸出功率達到2W(58K,3.3THz,單模)。盡管取得了很好的進展,但還需要更多的研究來實現室溫運行、更大的帶寬和更高的功率。PCA結合了上述源的許多優點:它們是緊湊、建立良好的寬帶源,帶寬 ...
池,一個用于光泵浦的激光器,一個用于電池內場控制的板載電磁線圈和兩個用于信號讀出的光電二極管。光束分離器將激光輸出分開,相關光學器件通過電池投射兩個正交光束,以實現三軸場測量。傳感器的中位數噪聲底限預計~15fT/sqrt(Hz)在3-100 Hz范圍內。這比典型的單軸或雙軸OPM的噪聲底略高,因為需要將激光束分開進行三軸測量(Boto et al.,2022)。兩個系統的傳感器安裝在相同的3D打印頭盔中(Cerca Magnetics Limited,Nottingham,UK),確保陣列幾何形狀對于所有測量都是相同的(參見圖1A-插圖)。陣列被放置在一個磁屏蔽室(MSR)中,包括四個金屬層 ...
入光纖中。激光泵浦脈沖通過光整流傳輸到有機晶體(OH1)產生太赫茲波。光轉換TOPAS Prime光參量放大器(OPA)泵浦采用相干Astrella Ti:Sapphire再生放大器,工作頻率為1 kHz,產生超短的1550 nm激光脈沖。OPA發射的激光脈沖波長為1550 nm,能量為200μJ,脈沖長度為40 fs。激光束在可變偏振分束器中以7:1的比例分裂,其中P偏振(水平)泵浦光束通過可變延遲線傳播到有機晶體以產生太赫茲波,S偏振(垂直)探針光束傳播到光纖發射階段。OH1晶體通過激光泵浦光整流產生太赫茲帶寬輻射脈沖。文獻42深入描述了太赫茲輻射脈沖產生的技術細節。隨后,產生的太赫茲輻射 ...
采用的雙色激光泵浦探測方案,此方案能更好去除泵浦光對探測光信號的干擾,以實現更高的信噪比和抗干擾性。采集到的方案經過昊遠精測專業熱傳導分析軟件平臺Thermo-Mind進行建模分析,就能夠得到樣品的相關熱物性參數了。需要了解更多時域熱反射測量系統(TDTR)詳情,歡迎大家咨詢聯系:昊遠精測光電科技(上海)有限公司電話:4006-888-762郵箱:info@autinst.com網址:www.autinst.com ...
個意義上說,光泵浦探測技術是提供高時間分辨率的完美工具,僅受光脈沖寬度和延遲級分辨率的限制。光泵浦探測技術已被廣泛應用于qcl中快速載流子動力學的研究。我們研究了中紅外探測脈沖通過飛秒近紅外泵浦脈沖調制的QCL的傳輸。與以往在低溫下使用光子能量高于量子阱(QW)帶隙的近紅外脈沖調制QCL不同,我們比較了在室溫下光子能量低于和高于0.77 eV (1.6 lm)的InGaAs QW帶隙的兩種不同的近紅外泵對QCL傳輸的調制。當光子能量高于QW帶隙時,電子將從價帶被激發到導帶,然后通過帶間躍遷放松回價帶。當泵浦光子能量低于QW帶隙時,由于光子沒有足夠的能量,將不會發生帶間躍遷。相反,在傳導帶較低的 ...
或 投遞簡歷至: hr@auniontech.com