足熒光基團從基態躍遷到激發態的能量要求時,多光子激發發生。熒光信號可以是進入生物樣品的外源探針(Hpechst,AlexaFluor488等),也可以是內源分子(NAD(P)H或逆轉錄熒光蛋白)。(2)多光子成像對二次諧波(Second harmonic generation, SHG)生成敏感,即兩個光子瞬間將它們的能量轉移到一個波長減半的光子上。二次諧波生成不需要熒光基團,但要求分子結構是高度有序和特別對稱的。最常見的滿足二次諧波生成的生物結構是膠原。(3)多光子成像是一種非線性的過程,信號產生要求功率密度達到MW/cm2的量級。如此量級只有在顯微物鏡的焦平面才可以達到,因而將可以觀測的信 ...
激發態躍遷回基態,釋放能量,形成穩定的激光輸出,但工作介質中的原子受到激勵源激發后使處在高能級的原子數數目必須大于低能級上的原子數數目,這樣增益大于損耗,才能使光的在諧振腔中不斷得到增強產生較強的激光。因此合適的激光工作介質和激勵源是激光器必不可少的組成部分。不同的工作物質的激發光源波段各異,如今的激光工作介質有固液氣和半導體在內的幾千種,并涵蓋了從真空紫外到遠紅外的波段,按波段劃分的激光器種類大致如下表:激光器波段(λ)常用工作介質遠紅外激光器25~1000μm自由電子激光器中紅外激光器2.5~25μmCO分子氣體激光器(5~6μm)近紅外激光器750nm~2500nm摻釹固體激光器(206 ...
中,光場會在基態和量子系統(例如分子)的相關激發態之間產生一個狀態。這種誘導狀態,通常被稱為虛擬態(在量子光學中也稱為修飾狀態)。這種狀態確實存在,但前提是光場開啟。使用激光脈沖時,虛擬狀態壽命由脈沖持續時間決定。直觀上,第一個光子誘導電子從基態躍遷到虛擬態,第二個光子誘導躍遷到激發態。雙光子吸收過程在多光子光學顯微鏡和多光子光學光刻中至關重要,這兩種應用都已商業化多年。多光子光學光刻已成為制造從納米級到微米級的三維(3D)結構的成熟方法。在3D光學光刻(也稱為直接激光寫入或 3D 激光納米打印)中,雙光子吸收導致光引發劑躍遷率的縮放,因此曝光劑量與光強度的平方成正比。至關重要的是,這種二次非 ...
用熒光分子的基態作為暗態。強制使得熒光分子處于暗態的機制采用受激輻射。當激發光光斑內的熒光分子吸收了激發光處于激發態后,用另一束STED光束照射樣品,使損耗光斑范圍內的分子以受激輻射的方式回到基態,從而失去發射熒光的能力。即熒光萃滅。這個過程就叫做受激發射損耗。只有損耗光強為零或較低的區域內的熒光分子能夠以自發輻射的形式回到激態發出熒光,這樣就實現了有效發光面積的減小。為了實現上述目的,損耗光聚焦后的光斑需要滿足邊緣光強較大,而中心趨于零的條件,一般采用的是環形的空心光斑,如圖2所示。圖2. 激發光斑(a),渦旋光(b),強度分布的線掃描(c),熒光疊加光斑(d). 傳統的方法可以用螺旋相位板 ...
測原理當處于基態的分子(圖1中的S0表示)吸收的光能量等于或大于較高能級的光(S1;S2;:::;Sn),電子在短時間內被激發到更高的能級。電子將經歷振動弛豫到激發態的最低振動水平(記為S1),這是一種稱為內轉換的非輻射過程。從S1電子態,分子通過輻射或非輻射過程回到基態。圖1表示了在這些能級中發生的不同發光現象。熒光是分子(熒光團)通過發射可檢測的光子(時間尺度為)衰減到基態的輻射過程。熒光發射發生在激發電子能級最低的位置(S1)。這種來自最低激發電子能級的強制發射確保了發射光譜保持不變,并且與激發波長無關。由于振動弛豫和內部轉換中的能量損失,發射的熒光光子的能量較低(即發射發生在比激發更長 ...
。分子居群從基態通過虛態轉移到分子的振動激發態(圖1A)。這與自發拉曼散射相反,自發拉曼散射從虛態到振動激發態的轉變是自發的,導致信號弱得多。圖1.受激拉曼散射原理(A) SRS的能量圖。泵浦和斯托克斯束的共同作用通過虛態有效地將樣品中的分子從基態轉移到第一振動激發態。被激發的振動狀態可以通過調節泵和斯托克斯梁之間的頻率差來選擇。(B) SRS作為能量轉移過程。由于分子振動的激勵,一個泵浦光子被吸收,一個斯托克斯光子被產生,這分別導致了傳輸泵浦光束和斯托克斯光束的SRL和SRG。由于分子振動的相干激發(圖1B),一個泵浦光子被樣品吸收,產生一個斯托克斯光子。這導致傳輸泵浦和斯托克斯光束強度的損 ...
重合,在高于基態的能級上誘導特定相干振動。這些振動分子被第三個“探測”激光探測,通常與泵浦激光頻率相同,使它們回到基態并產生頻率高于探測激光的反斯托克斯信號(圖1)。通過固定泵浦激光的波長和改變斯托克斯光束的頻率,可以獲得像SRS中那樣的寬帶測量。CARS實現了信號強度的1000倍提高,并且由于散射光是藍移的,因此它不受自熒光的干擾。與SRS一樣,信號強度的增加允許更短的采集時間,允許高達20 fps的視頻速率成像。與SRS不同,CARS信號與濃度呈非線性相關,因此定量成像并不簡單。第三種信號增強技術,SERS,依賴于修改樣本來增強信號。在SERS中,使用金和銀等金屬納米顆粒,當受到入射光的撞 ...
個NV中心的基態電子自旋亞能級ms=±1在局域磁場存在下發生塞曼分裂,導致 ?f=±γeBNV/2π的自旋能級發生頻移,其中γe為電子回旋磁比,BNV為沿NV對稱軸的磁場投影。假設[N]到[NV]的轉換效率為1%,NV中心沿金剛石的四個111晶體軸隨機取向,平均間距為20nm。因此,ODMR譜呈現出四對共振線,對應于BNV,i=1.4的磁場投影。如果您對磁學測量相關產品有興趣,請訪問上海昊量光電的官方網頁:http://www.arouy.cn/three-level-150.html更多詳情請聯系昊量光電/歡迎直接聯系昊量光電關于昊量光電:上海昊量光電設備有限公司是光電產品專業 ...
個電子能級:基態、激發態和亞穩單重態(圖1)。基態和激發態由自旋三重態組成,可以被an極化。圖1.NV中心的能級圖。它包含基態和激發態,具有三個自旋亞能級和一個亞穩態。與在室溫下容易被光漂白的傳統單發射體相比,自旋三重態地面層發出的發光特別有趣,因為弛化過程具有極大的時間穩定性。具有長松弛壽命的NV晶格能量結構中兩個缺陷自旋之間的室溫量子糾纏可能是量子計算的主要貢獻。此外,NV中心與晶格中其余原子之間的弱相互作用確保了高度穩定的發射,這也是與標記生物組織或表面表征(如熒光)相關的應用中非常理想的特性。了解更多詳情,請訪問上海昊量光電的官方網頁:https://www.auniontech.co ...
概念:注入器基態與上激光態的超強耦合和超短注入器區域。圖1我們的活動巖心設計(圖1(a))采用了一個兩井注入器,通過超薄屏障(0.8nm)將其與三井活動區域隔開。采用金屬有機化學氣相沉積(MOCVD)和分子束外延(MBE)兩種方法,在低摻雜InP:S襯底上生長出具有100次重復活性注入區的應變平衡InGaAs/InAlAs激光結構。電致發光器件采用深蝕刻、直徑130μm的半圓形平臺,頂部觸點為Ti/Pt/Au,底部觸點為退火的Ge/Au/Ni/Au,并覆蓋Ti/Au。將Fabry-Perot激光器制作成雙溝槽深蝕刻脊波導激光器,采用380nm SiNx作為側壁絕緣,并向下安裝在復合金剛石底座上 ...
或 投遞簡歷至: hr@auniontech.com