天我們要說的熒光觀察(Fluorescence Microscope)要介紹熒光顯微鏡,我們需要先簡單介紹一下熒光原理:在光的照射下,具有熒光特性的物質的電子在吸收能量后,可由低能級電子層躍遷到高能級電子層。高能態的電子是不穩定的,它會在極短的時間內(10-8s),以輻射光的形式釋放能量后,回到原來的能態。這時發出的光即為熒光(fluorescence),其波長比激發光的波長要長,原理如圖2-6所示。利用物質對光吸收的高度選擇性,可制成各種濾片,吸收一定波長范圍的光或允許特定波長的光通過,用來激發不同的熒光素,產生不同顏色的熒光。對于熒光的激發波長一般都在紫外和可見波段,而對于熒光的發射波段一 ...
示拉曼光譜,熒光壽命,光電流表征異質結的結果.拉曼光譜陜西師范大學徐華老師等人合成ReS2/WS2垂直異質結,上圖a是光學顯微鏡下材料的實際圖片.圖b黃,紅,藍三條光譜分別對應圖a中ReS2,ReS2&WS2界面,WS2處.Eg,Ag拉曼特征峰分別代表平面內振動模式和平面外振動模式.隨著層數的增加,Eg逐漸向低波數方向移動,Ag逐漸向高波數方向移動,通過兩個振動的位移差可以判定它的層數.上圖b顯示了在異質結晶粒中兩個相鄰區域和一維界面處獲得的拉曼光譜.從ReS2處收集的拉曼光譜在150 cm-1(Eg),308 cm-1(Eg)和213 cm-1(Ag)處出現特征峰,這與單層ReS2一 ...
熒光分析和成像技術由于具有高靈敏度和分子特異性等優點被廣泛應用在生物、化學、醫學、物理等領域,人們可以通過熒光光譜和熒光顯微技術來分析樣品中熒光團的組成,但是現有的熒光分析技術絕大部分是基于對熒光強度的測量,所以容易受到多種因素如激發光強度、熒光團濃度的影響,從而難以進行定量測量。熒光物質的熒光壽命指的是當其被激發光激發之后,該物質的分子吸收能量從基態躍遷到某個激發態,再以輻射躍遷的方式發出熒光回到基態。激發停止之后,分子激發出的熒光強度降到激發最大強度時的1/e所需的時間被稱為熒光壽命,它表示粒子在激發態存在的平均時間,一般被稱為激發態的熒光壽命。熒光壽命僅僅與熒光物質自身的結構和其所處的微 ...
備的鈣鈦礦的熒光壽命(時間分辨光致發光TRPL),基于混合陽離子單晶工程技術的和基于常規溶液混合法的(MA1-xFAxPbI3)1.0(CsPbBr3)0.05(x = 0.8)鈣鈦礦薄膜的壽命分別為44.15ns和32.39 ns。 這表明單晶工程技術制備的鈣鈦礦的復合率和陷阱濃度較低。我們可以得出結論,由于更長的壽命和更少的缺陷,基于混合陽離子單晶工程的鈣鈦礦可以有效地改善高性能PSC的穩定性。您可以通過我們的官方網站了解更多的產品信息,或直接來電咨詢4006-888-532。 ...
,有時受樣品熒光干擾,這時候可采用近紅外激發;紅外光譜在中遠紅外進行,不受熒光干擾。6. 拉曼光譜分子在平衡位置附近極化率變化不為零;紅外光譜分子在平衡位置附近偶極矩變化不為零。7. 拉曼光譜可以測試低波數的譜段,而且如果采用共聚焦顯微微區測試的話,光斑尺寸可以小到1微米,空間分辨率較好;紅外光譜測試低波數的譜段非常困難,而且微區測試較難,光斑尺寸約10微米,空間分辨率較差。8. 拉曼光譜可以測試水溶液,而紅外光譜不可測試水溶液。 ...
不同于普通的熒光濾色片,拉曼濾色片都要求非常銳利邊緣,一般起始波數都在200個波數左右。美國Chroma公司拉曼濾光片對于一些有低波數需求的應用,會使用陷波濾波片(Opti Grate Notch Filter)進行濾波,使用陷波濾波片可以使起始波數從5個波數開始。下圖所示就是用陷波濾波器所測得的拉曼光譜效果,可以看到其起始波數都是差不多5個波數開始,如果用一般的拉曼濾色片,那么就無法看到低波數的拉曼信號。OptiGrate公司公司低波數濾光片一般來說拉曼光譜所需求的光柵光譜儀要求光譜分辨率越高越好,受限于成本等原因普遍采用分辨率優于5個波數的光柵光譜儀即可。并且考慮到拉曼信號是弱信號,普通的 ...
光電效應與光電檢測技術原理當光子能量(hν)超過材料逸出功閾值時,表面電子吸收光子能量后克服原子核束縛形成自由電子發射,這一量子化物理現象被稱為光電效應(Photoelectric Effect)。愛因斯坦于1905年通過光量子理論首次完整詮釋該效應機理,由此產生的定向電荷遷移形成的電流稱為光電流(Photocurrent),其強度與入射光強、材料功函數及能帶結構密切相關。Mapping是一種顯微成像技術,一般用于研究物質的微結構組成,早些時候應用Mapping的是顯微光譜成像,用于研究樣品微結構上的光譜,從而掌握樣品的結構組成與物質組分。將激光通過無限遠物鏡聚焦到樣品表面,由于激光經過物鏡聚 ...
單光子是光的最小能量單元。常見單光子探測器根據光電效應制作而成,這種機制的主要是雪崩二極管,由于其探測效率低、暗計數比較大,限制其應用。而工作于超導態的單光子探測機理在100年以前已經被發現,隨著近代微電子、微加工技術的出現,使得超導單光子探測器才成為可能。超導單光子探測器(SSPD)由納米帶隙形式的超薄超導膜組成。為了更高效的探測單光子,該帶隙通常被做成曲線型。為了可以產生電脈沖,在超導帶加DC電流偏置,形成超導臨界態。當窄帶隙吸收光子后,形成具有非平衡濃度的準粒子區域。 此時,電流密度超過臨界水平,并在納米帶上形成電阻區域。該電阻區域是由于單光子在該位置打破了該點超導態,形成一個熱點,熱點 ...
強 !從避開熒光干擾方面進行考慮。下圖展示了某一樣品在532nm、633nm、785nm三種波長下獲得的拉曼光譜以及該物質的熒光光譜。可以看到該樣品的熒光峰主要集中在580nm至785nm之間,假如使用532nm或者633nm作為拉曼激發光,那么所獲得的拉曼信號會有很大一部分被更強的熒光信號所湮沒。所以對于該樣品,785nm波長是較為合理的拉曼激發波長。從分析樣品不同深度信息的需求進行考慮。激發光波長與在樣品中的穿透深度有如下關系:可以看到,激發光波長越長,穿透深度越深。對于多層樣品,例如下圖,可以利用不同波長穿透深度不同,進而分析樣品不同層的信息。除了上述三個方面之外,對于某些特定的拉曼探測 ...
單光子計數器現可分兩大類:時間相關單光子計數器和單光子計數器/單光子探測器;前者更多被稱作時間相關單光子計數器(TCSPC),更多應用在比較關心單光子對應的時間信息,而其根據分辨率不同、通道數不同又存在差異;后者更多被稱為單光子探測器,因為其內部集成有APD可探測單光子,對于要求探測器精度不高的場景,應用更加偏重單光子的數量,這種產品既涵蓋了單光子探測器的功能,又集成了單光子計數器的功能。本篇著重介紹后者,單光子計數器/單光子探測器(SPD)。基本框圖如下圖所示,主要由APD、偏壓控制、溫度控制、信號采樣、信號處理模塊、MCU控制器組成。圖1 系統框圖從上圖可看出,其核心部件是APD;當光照射 ...
或 投遞簡歷至: hr@auniontech.com