。又由于入射光瞳位于掃描器上,在實現像方遠心光路時,小可以使物鏡與掃描器之間的距離減小,使儀器軸向尺寸減小。但L一定時,小就大,這給光學設計帶來了困難,使光學系統復雜,加工制造成本增大。反之,儀器縱向尺寸加大,使用不便。實際工作中,應綜合考慮各方面因素,反復權衡,才能最后確定。大多數線性成像物鏡屬于小相對孔徑(一般下F數為)大視場的遠心光學系統,要求具有一定的負畸變,在整個視場上有均勻的光強度和分辨率,不允許軸外漸暈存在,并要達到衍極限性能。玻璃材料的質量與透鏡表面的均勻性要求比一般透鏡更為嚴格。相關文獻:《幾何光學 像差 光學設計》(第三版)——李曉彤 岑兆豐更多詳情請聯系昊量光電/歡迎直接 ...
徑光闌、入射光瞳和出射光瞳限制軸上成像光束立體角的光闌,稱為孔徑光闌(簡稱,孔闌)或有效光闌。孔徑光闌經由前面的光組在物空間形成的像稱為入射光瞳,簡稱入瞳。完全決定進入系統參與成像的最大光束孔徑,是物面上各點發出進入系統成像光束的公共入口。孔徑光闌經由后面的光組在像空間形成的像稱為出射光瞳,簡稱出瞳。是物面上各點發出的成像光束經過光學系統后的公共出口。合理的選擇系統孔徑光闌的位置可以改善軸外點的成像質量。同時,當光闌的位置改變時,光闌的口徑也要隨之變化,以保證軸上點光速的孔徑角度不變。孔徑光闌的口徑的大小將影響光學系統的分辨率、像面照度和成像質量。同時,如果物體位置發生了變化,原來限制光束的孔 ...
式分布在半個光瞳上的光線的光程,分別求得其相對于主光線的光程差。這樣,就可求得各項的系數,得到波像差隨光瞳坐標而變的表示式。利用它就可對已知光瞳坐標的任何光線算出其波像差。相關文獻:《幾何光學 像差 光學設計》(第三版)——李曉彤 岑兆豐更多詳情請聯系昊量光電/歡迎直接聯系昊量光電關于昊量光電:上海昊量光電設備有限公司是光電產品專業代理商,產品包括各類激光器、光電調制器、光學測量設備、光學元件等,涉及應用涵蓋了材料加工、光通訊、生物醫療、科學研究、國防、量子光學、生物顯微、物聯傳感、激光制造等;可為客戶提供完整的設備安裝,培訓,硬件開發,軟件開發,系統集成等服務。您可以通過我們昊量光電的官方網 ...
原點,然后用光瞳坐標來定義系統像差函數。但在畸變成像系統中,正如之前所討論的,因為x瞳和y瞳通常不會相互重合,所以我們自然沒有這樣的選擇作為我們的坐標原點。在這項工作中,我們將在最終圖像空間中任意定義與最后一個折射面切向的平面作為我們的圖像空間參考平面,它將起到與RSOS中出瞳平面相同的作用。在這個平面上,我們將建立我們的x-y坐標,它位于點o處的系統光軸中心。在物體空間中,我們選擇參考平面作為物體平面本身。使用上述定義的坐標原點,考慮以下畸變成像系統:假設我們有一個物點,在近軸物面上。設點是最終圖像空間中的理想圖像點。設Σ'為來自P經過坐標原點O的光線的波前,設S為中心為,半徑為O的 ...
,使望遠鏡的光瞳與轉像系統的光疃共軛,使軸外光束折向轉像鏡組,如下圖4所示。這種加于中間像面上或其附近的透鏡稱為場鏡,它的光焦度對系統的,總光焦度并無貢獻,不影響軸上點光束和系統的放大率。根據像差理論可知,位于像面上的場鏡除只產生匹茲凡和以及由此引起的畸變外,不產生其他像差。因此場鏡都用單透鏡,并且在不需由它來改變畸變時,都采用平凸透鏡。如果您對相關產品有興趣,請訪問上海昊量光電的官方網頁:http://www.arouy.cn/three-level-55.html相關文獻:《幾何光學 像差 光學設計》(第三版)——李曉彤 岑兆豐更多詳情請聯系昊量光電/歡迎直接聯系昊量光電關于 ...
,但在物距與光瞳直徑相比大得多時也能適用。顯微物鏡的像空間是符合此條件的。顯微鏡的分辨率以物面上能被物鏡分辨開的二點之間的zui小離表示。如下圖1所示,對應的兩像點之間的距離應等于其中任一個衍射斑的第1暗環的半徑,再考慮到像方孔徑角很小,有由于顯微物鏡總滿足正弦條件,且,故可得zui小分辨距為圖1但是,據以導出此式的基本公式只對兩個非相干的自身發光點是正確的。但在顯微鏡中,被觀察物體系被其他光源所照明,使物面上相鄰各點的的光振動是部分相干的,受此影響,式1中的數字因子將略有不同。根據參考資料,該數值因子將在0.57至0.83范圍內變化。根據阿貝研究,在對物體作斜照明時,zui小分辨距為從以上討 ...
或 投遞簡歷至: hr@auniontech.com