在可見光和近紅外波段的透過性接近光學玻璃。但在紫外和遠紅外波段其透過率大于50%,優于玻璃光纖。(4)低成本,經濟性好,工藝操作簡便。塑料光纖的原材料比玻璃光纖的原材料便宜得多,因而經濟性好;另外,塑料光纖的工藝操作溫度通常300℃一下,而玻璃和石英光纖的制作溫度需要1000℃以上的高溫,因而塑料光纖的工藝操作簡單。圖1,塑料光纖示意圖但塑料光纖在性能方面也存在如下顯著的缺點和問題,影響其應用的領域與范圍。(1)光學特性傳輸損耗大。塑料光纖是一種纖維狀的長鏈分子,隨著拉絲過程,長鏈分子的宏觀取向將和光纖的軸向一致。由于塑料光纖是由單體聚合而成,很難得到密度均勻的材料,因而光學均勻性不能得到很好 ...
括的紫外和近紅外波段的成像波段在這里不考慮。裝置更實用的光譜成像策略需要使用熟悉的和負擔得起的工具。D1種是商用RGB相機。這里展示的圖像是使用改良的索尼?7R III數碼相機進行的。對相機進行了改進,去掉了其內部的紅外濾光片,這擴展了相機紅色通道的靈敏度(圖1)。也提高了在較長可見波長下的光譜估計精度。用于成像的光是SPECTRA TUNE LAB(LEDMotive)光譜可調LED光源[8]。每個光源包含10個獨立尋址的LED顏色通道。LED的光譜功率分布如圖2所示,各LED的峰值波長如表1所示。這些源是定制的,包含10個通道,可以為藝術家的材料提供的顏色復制。特定的LEDZ初是根據模擬使 ...
的QCL在中紅外波段的性能水平無法與基于InP的QCL相匹配,但它們已被證明在太赫茲頻段非常成功。QCLs的短波長限制是由量子阱的深度決定的,近年來,為了實現短波長發射,在具有非常深量子阱的材料系統中開發了QCLs。InGaAs/AlAsSb材料體系的量子阱深度為1.6 eV,并被用于制備3.05 μm的QCLsInAs/AlSb QCL的量子阱深度為2.1 eV,電致發光波長短至2.5 μm。QCL還可以在傳統上認為光學性能較差的材料上進行激光運行。間接帶隙材料如硅在不同動量值下具有小的電子和空穴能量。對于帶間光躍遷,載流子通過一個緩慢的中間散射過程改變動量,顯著降低光發射強度。然而,子帶間 ...
適用于其它中紅外波長。在所有的一切中,材料質量是重要的,并強烈地影響差分增益和在設備內的傳輸。雖然在提高材料質量方面做出了很大的努力,但界面粗糙度仍然存在。目前,提出的許多“優化”設計只是對每個研究小組目前存在的材料做出了簡單的反應。由界面效應引起的輸運相干性的改變就是一個很好的例子,它可以極大地改變通過隧道裝置的峰值電流。因此,盡管通過微調振蕩器強度和反交叉能量仍有望取得一些改進,但提高器件性能的真正關鍵將是基于材料的。由于高效量子級聯激光器QCL的快速發展,在λ~4.6 ~ 4.8 μm范圍內實現了室溫連續運行的高功率DFB QCL[19,20]。設計并制備了一種簡單的平面光柵,其光柵深度 ...
長(通常是近紅外波段),因而其帶來的散射比傳統共聚焦顯微鏡中所使用的較短的可見波長更少。更長的波長同時也減少了來自散射光的背景照明,并增加了在更高深度處的對比度。目前,用TPEF顯微鏡可以獲得1mm深度的體內大腦圖像。在熒光顯微鏡中,當兩個獨立的光子被一種介質同時吸收時,就會發生雙光子激發。這需要兩個合適能量的光子在這樣的介質上時間和空間上同時重合;通常來說這不需要非常大的激發光子通量,當然光子通量越大, 雙光子同時被吸收的概率就越大。在TPEF顯微鏡中,更高的光子通量會帶來更高的效率,從而帶來圖像質量和分辨率的提升。在TPEF顯微鏡中,雙光子激發所需的大光子通量更多的是通過寬波段可調諧的鈦寶 ...
a)。選用近紅外波長減小生物樣品的激光吸收和光損傷。圖1a左為泵浦光生成部分,中為受激拉曼散射生成及同時明場顯微鏡成像,右為斯托克斯光束檢測及使用頻譜分析儀進行信號處理。明亮壓縮光源(bright squeezed light)詳細結構見圖2。(2)使用專用的光學參量放大器在斯托克斯光子之間引入了量子關聯關聯,實現量子關聯抑制噪聲,從而提高顯微鏡的信噪比。關聯抑制或“壓縮(squeeze)”受激拉曼調制邊帶(sideband)頻率下斯托克斯場上的噪聲幅度(圖 3a,虛線),同時保持拉曼信號強度不變(盡管時空模態變化會影響這一點)。成像效果圖:a、拉曼位移為3,055 cm-1的3 μm聚苯乙烯 ...
制器可以在近紅外波段切換速度可以達到數百赫茲,在可見光波長實現1K Hz的幀率。同時也可用于實現光束復用和自適應光學,產生與散射組織或者光學元件共軛的波前,從而減少來自光學器件和樣品的光束畸變。圖3. Meadowlark純相位液晶空間光調制器生成的11x11點陣圖圖4. 使用SLM生成貝塞爾光束圖5. Lu, R., Sun, W., Liang, Y., Kerlin, A., Bierfeld, J., Seelig, J. D., ... & Koyama, M. (2017). Video-rate volumetric unctional imaging of the br ...
功能,在產生紅外波長的基頻光的同時對其進行倍頻。典型的自倍頻晶體有摻雜釹離子的四硼酸鋁釔(NYAB)、摻雜鐿離子的四硼酸鋁釔(Yb:YAB)、摻雜釹或鐿離子的硼酸鈣氧鹽(Nd/Yb:RECOB)等晶體。圖1.激光倍頻示意圖由于激光強度很高,因此會引起晶體材料原子極化,也就是正負電荷中心分離。這種分離是動態振動的,而且振動頻率與激光的頻率一致,振動幅度與激光場強度相關。因為激光電磁場強度與極化強度存在非線性。對于2階非線性,也就是極化強度與激光的電場強度E的平方成比例。黃綠光激光(500-600 nm)處于人眼敏感區域,在醫療DNA 檢測、熒光生化檢測、工業標示、科研、激光顯示等領域有重要的需求 ...
乎都處在短波紅外波長區。所以,有了短波紅外相機,再加上這種常常被稱為夜氣輝的夜間光照度,我們便能夠在無月光的夜間很清楚地“看到”目標。夜視儀、夜間交通記錄儀、防盜攝像頭等應用都是基于SWIR的成像技術,適當的使用紅外光源對物體進行補光可以得到更好的成像效果。圖2.短紅外成像2.SWIR的穿透性:光是電磁波,而電磁波擁有可以繞開障礙物繼續向前傳播的能力。通常波長越短,其穿透力越弱,波長越長,其穿透力,也就是繞過障礙物的能力,越強。因此,SWIR相機相較于普通的、只在可見光范圍內感光的相機來說,其穿透能力越強。換句話說,SWIR相機可以檢測到更多那些繞開障礙物到達傳感器的光,有效探測距離遠。因此, ...
掩模版可與遠紅外波長染料和1.49NA的100倍物鏡配合使用。樣品在640 nm激光連續照射下在Prime95B上成像,曝光時間為30 ms。使用3DTRAX軟件對單發射點進行定位,并將結果導出到ImageJ插件Thun-derSTORM。使用歸一化高斯方法重建圖像,并使用ImageJ查找表“Spectrum”以顏色對z深度進行編碼。圖2:單個100nm珠在Prime95B上使用SPINDLE在焦平面(0μm)和焦平面上方(+1μm)和下方(-1μm)微米處的成像圖。重建的結果包含超過200萬個定位,并顯示Cos7細胞中微管的30μmx30μm視野、深度超過2.1μm的范圍(圖3左)。深度以顏 ...
或 投遞簡歷至: hr@auniontech.com