考慮一個電光波片。 假設與晶體主軸成 45偏振的光束平行于電光晶體的第三軸傳播。 在沒有外加場的情況下,晶體通常是任意延遲的多階波片。當外加電場時,電光效應會在不同程度上改變沿兩個晶體方向的折射率,從而改變 有效波片的延遲。如圖 2 所示,一個簡單的幅度調制器的幾何結構由一個偏振器、一個用于零延遲的電光晶體切割和一個分析器組成。輸入偏振器保證光束與晶體主軸成 45° 偏振。晶體充當可變波片,隨著施加電壓的增加,將出射偏振從線偏振(從輸入旋轉 0°)變為圓偏振、線偏振(旋轉 90°)、圓形等。分析儀僅透射已旋轉的出射偏振分量,從而分別產生 0、0.5、1 和 0.5 的總透射率。傳輸和應用場之間 ...
鏡前放置一個波片。如果使用半波片,線極化方向可以相對于樣品旋轉。如果使用四分之一波片,入射的線偏振光狀態可以改變為圓偏振或橢圓偏振。在光譜儀前放置另一個偏振器(分析儀)和一個波片,以選擇所需的散射光偏振分量。所述分析儀的角度設置為使具有特定偏振的光子通過;由于光柵光譜儀的吞吐量可以產生顯著的偏振依賴性,從而使信號的偏振依賴性發生顯著扭曲,因此采用半波片來保持進入光譜儀的信號的偏振方向相對于光柵槽方向不變。由于大多數光學元件都有一定程度的偏振依賴性,因此在設計光學系統時必須謹慎,以獲得準確的結果。例如,由于s偏振和p偏振的反射率不同,入射到鏡子上的光應該是純s偏振或p偏振,以避免由于反射而引入橢 ...
如何快速制造教學用低成本拉曼光譜儀激發光源激發源的技術指標,如波長、線寬(單色性)、光功率等,是獲得高質量拉曼光譜的關鍵。通常,拉曼光譜出現在激發波長(Stokes)以上和(反Stokes)以下的約10 ~ 200 nm。拉曼散射效率與激發波長的四次方成反比。因此,較低激發波長(UV和可見光)的激光器比紅外光源產生更好的拉曼信號。我們使用了一種低成本和易于獲得的綠色(~ 532 nm)激光筆,二極管泵浦固態激光器(DPSS)作為激發源。內置的Nd:YAG和KTP晶體將激光二極管的主發射波長808 nm先轉換為1064 nm再轉換為532 nm。有利的是,該激光筆帶有必要的電子驅動電路、被動散熱 ...
)與四分之一波片(λ/4)進入光學腔,然后通過反射到達光電探測器,偏振分束棱鏡(PBS)與四分之一波片(λ/4)的作用就是讓腔反射光進入探測器。然后對反射光信號進行相位解調,得到反射光中的頻率失諧信息,產生誤差信號,然后通過低通濾波器和PID(比例積分電路)處理后,反饋到激光器的壓電陶瓷或者聲光調制器等其他響應器件,進行頻率補償,Z終實現將普通激光鎖定在超穩光學腔上。關于PDH技術的理論細節可以在一些綜述論文和學位論文中找到。為了實現PDH鎖定,需要一些專用的和定制的電子儀器,包括信號發生器,混頻器和低通濾波器。Moku的激光鎖盒集成了全部的PDH電子儀器,在提供高精度的激光穩頻功能上實現了便 ...
束鏡)和一個波片((λ/4)進入我們的超穩腔與超穩腔進行諧振,反射出來的光再次經過偏振分束鏡和波片被反射到光電探測器中,然后對其進行相位解調后得到誤差信號,誤差信號通過混頻器以及低通濾波器進行處理后,得到的信號反饋到激光器的壓電陶瓷或其他響應部件進行補償頻率,Z終實現激光器另一路激光輸出頻率的穩定。PDH穩頻技術的核心是通過光學超穩腔產生一個誤差信號,其核心部件就是光學超穩腔,超穩腔的性能直接影響了Z終輸出的激光頻率的穩定性。所以光學超穩腔的選擇顯得尤為重要。在為您的應用選擇理想的腔體設計時要考慮的因素包括:線寬:在穩頻激光器系統中,線寬越窄,激光的頻率越集中,輸出激光的頻率就會越穩定。所以超 ...
控制旋轉的半波片,當控制普克爾盒的偏置電壓,時光的偏振改變角度為90°時,可以在兩偏振方向垂直的偏振片之間實現光調制。圖1:橫向普克爾盒的工作示意圖普克爾斯效應有縱向普克爾斯效應和橫向普克爾斯效應兩種;當電壓加壓方向平行與光傳播方向時,稱為縱向普克爾效應;當電壓加壓方向與光傳播方向垂直時,稱為橫向普克爾效應;普克爾盒的半波電壓與施加電壓方向的晶體長度相關,所以縱向普克爾盒的半波電壓非常高(千伏),較高的電壓會限制調制頻率升高;為了達到更高的調制頻率需要降低半波電壓,而橫向普克爾盒的半波電壓不會隨著晶體的長度增加而而增加;如美國 Conoptics 公司的普克爾盒的橫向半波電壓可以控制在一百伏左 ...
以通過前置濾波片等方法進行人為消除,電噪聲這種設備自身的噪聲,無法進行人為消除,只能依賴探測器本身性能。因此探測器自身的暗計數以及探測效率直接性的影響了是否能夠探測到并有效接收Z終光響應脈沖的光子且不會被淹沒在噪聲中。2001年俄羅斯莫斯科師范大學 Gol’tsman小組利用5nm厚度的氮化鈮(NbN)薄膜制成的單根直納米線條成功實現了從可見光到近紅外光子的探測由此開啟了SNSPD研究的先河,而后,該小組成立的俄羅斯SCONTEL公司,二十多年來一直致力于超導納米線單光子探測器的研究,不斷地在技術上取得了新的突破。http://www.arouy.cn/details-314.h ...
線偏振通過半波片(λ/2)調節,結果是在偏光分束器立方體(PZ)后進行獨立的強度調節,確保兩束光束在進入顯微鏡時具有平行的偏振狀態。第②步,在使用示波器實現脈沖序列的時間重疊之后,可以使用自相關器進行微調。通常,自相關器的總范圍為~ 50ps,這意味著脈沖重疊必須在示波器的500ps精度和這個50ps動態范圍之間的區域通過試錯找到。自相關器是一種用來表征極短激光脈沖的光學儀器。它的工作原理是利用激光脈沖本身作為測量工具。在自相關器中,輸入光束被分束器分離并送入典型的干涉儀的兩個臂(圖2)。干涉儀的一個臂具有精確的延遲級,可快速掃描。在延遲之后,兩束光束被重新組合并使用一個讀出非線性過程進行測量 ...
個延遲與靜態波片相加產生λ/2延遲,影響90°極化旋轉。當調制器位于- 1/4波時,兩個延遲抵消,凈極化旋轉為零。整個光學系統可以與偏振分析儀相結合,使未旋轉的光被透射,旋轉的光被抑制。因此,總的來說,在適度的輸入功率和緊湊的儀器的情況下,所選參考頻率的調制基本上可以達到100%的調制深度。假定SRS信號隨調制深度線性擴展,使調制深度較大化為在給定的平均功率下,獲得較高信號電平是很重要的。圖1顯示了調制器驅動電路的原理圖,其中包含采樣分量值和調制波形的示波器跡。更多詳情請聯系昊量光電/歡迎直接聯系昊量光電關于昊量光電:上海昊量光電設備有限公司是光電產品專業代理商,產品包括各類激光器、光電調制器 ...
第旋轉器和半波片,在相位調制(PM)EOM中傳輸時,激光被偏振。然后激光束在的X軸上保持偏振狀態,通過改變相位調制電壓來調制(PM)EOM的折射率。調幅(AM)EOM由PBS、半波片、四分之一波片、電光晶體和反射鏡組成。反射鏡安裝在壓電陶瓷上,以補償腔長的長期變化。當X軸偏振光束發射到AM-EOM時,半波片將光束旋轉45°,以獲得Z軸和X軸上相等的分量。由于雙折射效應,光束沿橢圓偏振,在四分之一波片和中旋轉傳播。仔細調整波片后,當反射光束到達時,大部分激光功率仍停留在X軸上。PBS1作為一個分析儀,在Z軸向外反射激光功率。當調制電壓加載在上時,Z軸和X軸之間的激光功率比發生變化,導致損耗調制。 ...
或 投遞簡歷至: hr@auniontech.com