光學系統中的光闌有幾種不同性質的光闌。其中孔徑光闌和視場光闌是任何光學系統都具有的兩種主要光闌。有些系統中還有漸暈光闌和消雜光光闌。孔徑光闌、入射光瞳和出射光瞳限制軸上成像光束立體角的光闌,稱為孔徑光闌(簡稱,孔闌)或有效光闌。孔徑光闌經由前面的光組在物空間形成的像稱為入射光瞳,簡稱入瞳。完全決定進入系統參與成像的最大光束孔徑,是物面上各點發出進入系統成像光束的公共入口。孔徑光闌經由后面的光組在像空間形成的像稱為出射光瞳,簡稱出瞳。是物面上各點發出的成像光束經過光學系統后的公共出口。合理的選擇系統孔徑光闌的位置可以改善軸外點的成像質量。同時,當光闌的位置改變時,光闌的口徑也要隨之變化,以保證軸 ...
L5和4mm光闌(iris)一起濾掉高階衍射光。所用LED為880mW白光LED,匹配全帶寬為10nm的,中心波長分別為633、532、460nm的濾光片。LED耦合進纖芯直徑200um的多模光纖輸出。SLED模組(EXALOS RGB-SLED engines)單模光纖輸出,z大輸出功率5mW,中心波長分別為635、510、450nm。實驗結果:參考文獻:Yifan PengSuyeon ChoiJonghyun KimGordon Wetzstein,"Speckle-free holography with partially coherent light sources an ...
客戶只需要用光闌將零級光濾掉,只讓一級光通過即可。b)疊加菲涅爾透鏡MLO公司的調制器控制軟件提供生成任意焦距菲涅爾透鏡的功能,用戶可以將全息圖與該菲涅爾灰度圖進行疊加,從而零級光與衍射光的焦平面會發生錯位,零級光在衍射光的焦平面上會發散掉,從而減小零級光的影響。光路方面:1)光路中添加偏振片和半波片,提高入射光的偏振態準確性為了使用SLM作為相位調制器,入射偏振必須是線性的,并且與LC分子對齊。為了確保入射光的偏振是線性的,建議在激光光源后放置一個偏振器。為了確保偏振與LC分子對齊,建議在偏振器和SLM之間放置半波片,通過半波片的旋轉可以將0級光調到zui小。2)光路中添加使用0階塊(0th ...
像方遠心是指光闌放置在光學器件之前, 這樣不同視場角的主光線在焦平面上平行。與像方遠心對應的是物方遠心,兩個系統的串聯組合構成雙遠心。當掃描鏡頭被稱為遠心時,通常意味著鏡頭不僅滿足 F-θ 條件,而且光闌被放置在掃描設備上,以確保遠心性。為了構建雙遠心中繼系統,第一個中繼透鏡放置在掃描鏡之后一個焦距處,第二個中繼透鏡放置在物鏡后背孔徑之前一個焦距處,中繼透鏡之間的距離為二者的焦距之和。請注意,遠心區域位于鏡頭之間,而其他雙遠心系統則在中繼系統的任一側都是遠心的。由于中繼透鏡的位置,這種配置被稱為 4f 中繼系統。它們的焦距之間的任何差異都會導致一定的放大倍數。DOI:https://doi.o ...
率色差顯然與光闌位置有關,因光闌與物鏡重合,倍率色差也不會產生。例如,單個薄透鏡不可能校正位置色差,當光闌與之重合時倍率色差為零;而當光闌位置移動時,倍率色差就要隨之變化。當光闌位于透鏡之前時,如下圖所示,因,F光比C光偏折角度更大,y'F<y'C,故產生負的倍率色差;反之,如光闌位于透鏡之后,則產生正的倍率色差。相關文獻:《幾何光學 像差 光學設計》(第三版)——李曉彤 岑兆豐關于昊量光電昊量光電 您的光電超市!上海昊量光電設備有限公司致力于引進國外先進性與創新性的光電技術與可靠產品!與來自美國、歐洲、日本等眾多知名光電產品制造商建立了緊密的合作關系。代理品牌均處于相關領域的 ...
方便的選擇是光闌位置的的放大倍率和像面的的放大倍率。在這種情況下,物空間和象空間的交換只涉及符號的改變,這是一個明顯的優勢。值得注意的是,畸變校正的條件依賴于物體的位置是例外的。我們把像差劃分為級數,這一分類打破了我們熟悉的階的劃分。只有被稱為零級數的序列的畸變,在不同的放大倍率下,才表現出這種不可調和的消失狀態的特性。這正是透鏡系統軸向面出現的像差,一般稱為初級像差。在所有其他情況下,如果一個對象位置滿足條件,那么所有位置都滿足條件。因此,在討論像差參考系統時,只需要考慮這些初級像差。初級像差完全由一個平面內所有光線通過系統軸線的路徑所決定。所有這些射線都與軸相交,而關于軸交點的知識顯然提供 ...
射鏡上的孔徑光闌(洞)到達衍射光柵(參見圖2)。光柵把光按波長展開,就像棱鏡把白色的光轉換成彩虹一樣。一個寬帶光,例如太陽光是由很多不同波長的光組成的。當衍射光柵暴露在這種類型的光下,它將從多角度反射光線產生了一個分散的光譜就像一道彩虹。類似地,如果光柵接觸了一種單一光源,比如一束激光,那么只有激光的特定波長的光會被反射。圖1 PR-788光譜測量范圍對于PR-655、PR-670和PR-788測量波長范圍是380納米(nm)(紫色)到780nm(深紅色)-即電磁波的可見光譜段 (參見圖1)。衍射光譜到達CCD探測器;PR-655探測器是128位的線性探測器,PR-670探測器是256位的線性 ...
定要使其彎向光闌,以使主光線的偏角或ip角盡量小,以減少軸外像差。反之,背向光闌的面只能有較小的相對孔徑。三、像差不可能校正到理想程度,Z后的像差應有合理的匹配。這主要是指:軸上點像差與各個視場的軸外像差要盡可能一致,以便能在軸向離焦時使像質同時有所改善;軸上點或近軸點的像差與軸外點的像差不要有太大的差別,使整個視場內的像質比較均勻,至少應使0.7視場范圃內的像質比較均勻。為確保0.7視場內有較好的質量,必要時寧愿放棄全視場的像質,讓它有更大的像差。因為在 0.7視場以外以非成像的主要區域,當畫幅為矩形時(如照相底片),此區域僅是像面一角,其像質的相對重要性可以較低些。四、挑選對像差變化靈敏、 ...
和出瞳,除了光闌位置。相反,對于每個對稱平面,我們會有一組唯①的光瞳。由于這些特征,當我們討論光程差誤差(OPD)或光線誤差時,在每個空間中,我們不清楚我們指的是哪個圖像點的誤差。在計算OPD時,在每個空間中,參考球的中心點應該是高斯圖像中的哪個點?由于通常在Z終圖像空間中我們沒有唯①的出瞳,如果系統光闌不在這個空間中,那么當我們寫出波像差函數時,我們使用的是哪個坐標?這些困難也許可以解釋為什么自塞德爾第①次描述他的五種塞德爾像差以來,150多年過去了,但除了簡單的平行圓柱形變形連接系統以外,沒有人提供一套一般變形系統的完整的初級像差系數。相關文獻:《幾何光學 像差 光學設計》(第三版)——李 ...
的圖像,孔徑光闌只要與眼瞳匹配即可。被動式紅外系統本身不帶有紅外光源,而是直接探測目標發出的紅外輻射。凡是絕對零度以上的物體都會發出紅外線,但由于不同的物體之間、物體的不同部位、以及物體與環境之間溫度不同,發射的紅外線的波長和強度也就各不相同。溫度較低的物體發出的紅外線主要分布于遠紅外區,而溫度較高的熱源如發動機等發出的紅外輻射波長在中紅外區,輻射強度也相當高。利用這些輻射特性的差別,并通過對紅外光進行光電、電光轉換,可以得到人眼可視的圖像。因此,這種圖像反映的是目標的輻射溫度分布。相關文獻:《幾何光學 像差 光學設計》(第三版)——李曉彤 岑兆豐更多詳情請聯系昊量光電/歡迎直接聯系昊量光電關 ...
或 投遞簡歷至: hr@auniontech.com